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ABSTRACT

The lower Miocene Rincon Shale is exposed in scattered, generally poor outcrops in 
the Santa Ynez and Topatopa Mountains, and is widespread in the subsurface in the 
petroliferous offshore Santa Barbara Channel and onshore Ventura basin. In this 
region, the Rincon is as much as 760 m thick and consists mainly of mudstone, 
shale, and dolomite that record deposition in bathyal marine environments. We 
measured a stratigraphic section of the Rincon in unusually fresh and continuous 
exposures in excavations at the Tajiguas Landfill, about 40 km west of Santa Barbara. 
Fifty-one samples from this section were analyzed using Rock-Eval pyrolysis and 
vitrinite reflectance. Total organic carbon in these samples ranges from 0.21 to 5.71 
weight percent and averages about 2.66 weight percent, suggesting that the Rincon 
has good to very good potential as a source of hydrocarbons. A modified van 
Krevelen diagram and a plot of hydrogen index (HI) versus Rock-Eval Tmax show 
that most kerogens in our Rincon samples are oil- and gas-prone types II and III. 
Vitrinite in these samples is too sparse to be of value in determining thermal 
maturity, but values of Rock-Eval Tmax are less than 432 °C, indicating that the 
samples are thermally immature with respect to the oil window.

Organic-rich strata within the Rincon Shale, while thermally immature at the 
Tajiguas Landfill, are likely sources of oil and gas in areas of the Santa Barbara 
Channel and onshore Ventura basin where the Rincon has been buried as deep as 
the oil window. However, further geochemical studies (for example, oil-source rock 
correlations) are needed to establish whether the Rincon has actually generated 
hydrocarbons in commercially significant amounts.

INTRODUCTION

The offshore Santa Barbara Channel and adjacent onshore Ventura basin are an 
important petroleum-producing region in coastal southern California (fig. 1). Most 
of the oil and gas is produced from reservoirs in sandstones and fractured fine 
grained rocks of Tertiary age (Curran and others, 1971; Nagle and Parker, 1971; 
Keller, 1988; California Division of Oil and Gas, 1991). However, little public 
information is available about petroleum source rocks in this region, which are 
believed to include organic-rich strata ranging in age from Cretaceous to Pliocene 
(Keller, 1988).

The lower Miocene Rincon Shale has long been recognized as a possible source of 
hydrocarbons (e.g., Curran and others, 1971, p. 201; Nagle and Parker, 1971, p. 267; 
Edwards, 1972, p. 46; Link and Dibblee, 1988, p. 29), but little has been published on 
the organic geochemistry of this unit. The purpose of this report is to present the 
results of a reconnaissance study, using Rock-Eval pyrolysis and vitrinite reflectance, 
of the petroleum source potential and thermal maturity of 51 samples collected 
from the Rincon Shale in a measured stratigraphic section at the Tajiguas Landfill, 
about 40 km west of Santa Barbara (figs. 1,2,3). Our data show that mudstone, shale,
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SANTA BARBARA CHANNEL

EXPLANATION

Fill (Quaternary) 

Alluvium (Quaternary) 

Landslide deposits (Quaternary)

Qoa Older alluvium (Quaternary)

Rincon Shale (Miocene)

Vaqueros Sandstone1 (Oligocene 
and/or Miocene)

Monterey Shale1 (Miocene)

1 0f Dibblee (1988a,b)

T I Sespe and Alegria1 Formations, undivided
I Sci I /Crtoiann f~\\'mnr*e\n£\ Qnrt/s\r K4in/«Ana\(Eocene, Oligocene, and/or Miocene)

Gaviota Formation 1 (Eocene)

Ts Sacate Formation 1 (Eocene)

Figure 2. Geologic sketch map of the Tajiguas Landfill area (modified from Dibblee, 
1988a, b), showing location of the measured stratigraphic section in fig. 3.
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and dolomite in the Rincon are possible sources of both oil and gas, but are 
thermally immature with respect to the oil window in the area sampled.

The Tajiguas Landfill is operated by the County of Santa Barbara, and is located 
along the east side of Canada de la Pila in the Gaviota and Tajiguas 7.5-minute 
quadrangles. Bulldozer excavations at the landfill created unusually fresh and 
continuous exposures of the Rincon Shale, which we measured and sampled during 
September, 1990, and June, 1991. Subsequently, however, many of these exposures 
were covered by household garbage and other fill materials.

REGIONAL STRATIGRAPHIC SETTING

The Rincon Shale is exposed in discontinuous, generally poor outcrops in the Santa 
Ynez and Topatopa Mountains, and also has been penetrated by numerous wells in 
the onshore Ventura basin and offshore Santa Barbara Channel (fig. 1). The Rincon 
consists primarily of mudstone, with minor dolomite, siliceous shale, and 
sandstone (Dibblee, 1966; Edwards, 1971,1972). In places, the Rincon is as thick as 760 
m (Vedder and others, 1969, p. 3; Curran and others, 1971, p. 201).

The name "Rincon Shale" is the current preferred usage of the U.S. Geological 
Survey for this unit in the region between Goleta and Point Conception (J.R. Le 
Compte, U.S. Geological Survey, oral communication, 1992); this area includes the 
Tajiguas Landfill (fig. 1). The name "Rincon Shale" has been used by many authors, 
including Woodring (1932, pi. 2), Upson (1951), Bandy and Kolpack (1963), Weaver 
(1965a, b), Dibblee (1966,1988a, 1988b), Vedder and others (1969), Nagle and Parker 
(1971), Isaacs (1981,1983), and Ogle and others (1987). However, the same rocks in 
the same area also have been called the Rincon Formation by Kerr (1931), Kew (1932, 
p. 50), Carson (1965), Edwards (1971,1972), Patet (1972), Finger (1983), Arends and 
Blake (1986), Huddleston and others (1986), DePaolo and Finger (1991), and 
Pinkerton (1991); "Temblor clay shale" by Cushman and Laiming (1931); the 
Temblor Shale by Swayze (1943); "Temblor" claystone by Hill (1943); the Rincon 
Mudstone by Bramlette (1946, pi. 2); and the Rincon Claystone by Dibblee (1950, 
1988c). The type section is along Los Sauces Creek, about 67 km east of the Tajiguas 
Landfill (fig. 1; Kerr, 1931; Keroher, 1966, p. 3277).

The Rincon Shale was deposited at bathyal depths in an elongate trough whose axis 
was nearly coincident with the present-day coastline (Edwards, 1971,1972). 
Paleomagnetic data suggest that the basin axis, now oriented east-west, may have 
been north-south prior to clockwise tectonic rotation of about 90° (Hornafius, 1985; 
Pinkerton, 1991) beginning about 17.7 Ma (Stanley and others, 1992). The 
depositional setting of the Rincon is unclear, and probably varied from place to 
place; environments suggested for the Rincon in the Santa Barbara coastal area 
include slope (Ingle, 1980), basin floor (Finger, 1983), and bank-top (Hornafius, 1991). 
Paleobathymetric analyses of benthic foraminiferal assemblages in the lower part of 
the Rincon in the area of its type locality, and at the Tajiguas Landfill, indicate rapid 
bathymetric deepening from water depths of less than 100 m (represented by



shallow-marine sandstones of the Vaqueros Formation) to bathyal depths greater 
than 2,000 m (Finger, 1983; Pinkerton, 1991). The rate and magnitude of the 
deepening indicate rapid tectonic subsidence (Ingle, 1980; Finger, 1983; Pinkerton, 
1991; Pinkerton and Rigsby, 1991), perhaps associated with an episode of regional 
extension or transtension related to a change in plate motions in the circum-Pacific 
area (Stanley, 1988).

Fractured shale reservoirs in the Rincon Shale produce oil in the Alegria field 
(Weaver, 1965a, p. 5) and Sespe field (Nagle and Parker, 1971, p. 269); oil and gas in 
the onshore and offshore areas of the Elwood field (Hill, 1943, p. 380; Dryden and 
others, 1968, p. 140; California Division of Oil and Gas, 1991, p. 655); and gas in the La 
Goleta field (Swayze, 1943, p. 384). Sandstone interbeds in the Rincon Shale are 
reservoirs of petroleum locally in the Ventura basin (Nagle and Parker, 1971, p. 267) 
and in the South Elwood offshore field (Curran and others, 1971, p. 201; Taylor, 1976, 
p. 27; California Division of Oil and Gas, 1991, p. 659). Published cross-sections from 
many onshore and offshore fields (California Division of Oil and Gas, 1991) suggest 
that the Rincon is an important seal for petroleum accumulations that occur in 
sandstone reservoirs within the underlying Vaqueros.

THE TAJIGUAS LANDFILL SECTION

In the Tajiguas Landfill section (fig. 3), the Rincon Shale conformably overlies the 
Vaqueros Sandstone of Dibblee (1988a, b); the contact is gradational over a few 
centimeters from fine sandstone upward to siltstone and mudstone. New data 
indicate that the Rincon Shale in the Tajiguas Landfill section is entirely of early 
Miocene age (Saucesian benthic foraminiferal stage of Kleinpell, 1938,1980) on the 
basis of benthic and planktic foraminifers and calcareous nannofossils (Mary Lou 
Cotton and Mark Filewicz, Unocal Corporation, oral and written communications, 
1991, 1992). Several previous investigations, however, concluded that the lower 
part of the Rincon along the Santa Barbara coast may fall within the Zemorrian 
benthic foraminiferal stage of Kleinpell (1938,1980), and may be as old as late 
Oligocene (e.g., Kleinpell and Weaver, 1963; Edwards, 1972; Isaacs, 1981,1983; Finger, 
1983; Huddleston and others, 1986; Pinkerton, 1991). According to Mary Lou Cotton 
(written communication, 1992), new evidence suggests that the conclusions of these 
previous investigations were probably the result of an original miscorrelation by 
Kleinpell (1938).

The Rincon is conformably overlain by the Miocene Monterey Shale of Dibblee 
(1988a, 1988b). According to Dibblee (1966, p. 46), the basal part of the Monterey in 
this area is a soft white tuff (commonly referred to by the term "bentonite"). At the 
Tajiguas Landfill, the tuff is weathered, poorly exposed, apparently felsic, and about 
70 cm thick. This tuff may have originated from the same eruptive center and may 
be the same age as a welded tuff yielding an ^Ar/^Ar age of 17.79 ± 0.10 Ma (Stanley 
and others, 1991) in the Tranquillon Volcanics of Dibblee (1950) on Tranquillon 
Mountain, about 42 km west of the Tajiguas Landfill (fig. 1). In the Tajiguas Landfill 
section, the lower part of the Monterey is of early Miocene age (Saucesian and



Relizian benthic foraminiferal stages of Kleinpell, 1938 and 1980) on the basis of 
microfossils (Edwards, 1972; Pinkerton, 1991).

At the Tajiguas Landfill, the Rincon Shale is 449 m thick and consists mainly of 
mudstone with subordinate semi-shale, siliceous shale, and dolomite. The 
mudstone is generally gray brown to dark chocolate brown on fresh surfaces, and 
weathers white to shades of grayish-, orangish-, and reddish- brown. In places, 
yellow jarosite, a weathering product, is common along fractures. Most of the 
mudstone is hard and displays chippy to spheroidal weathering. The mudstone is 
bioturbated to apparently massive and crudely stratified. Where visible, 
stratification is marked by (1) subtle variations in texture, color, and weathering; (2) 
by tabular dolomite concretions; and (3) by laterally persistent zones of spheroidal to 
ellipsoidal dolomite concretions. The mudstones display varying reactions to dilute 
hydrochloric acid (HC1); in this report, mudstones with vigorous to weak reactions 
to HC1 are referred to as calcareous, while mudstones with no reaction to HC1 are 
called noncalcareous. Fossil foraminifers and fish fragments (scales, bones, and 
teeth) are commonly observed on freshly broken surfaces. A shark's tooth collected 
about 184.5 m above the base of the Rincon was identified by J.D. Stewart (Natural 
History Museum of Los Angeles County, written communication, 1991) as 
belonging to the genus Carcharhinus, a group of voracious predators.

The term "semi-shale," an unconventional lithologic name used in this report, 
refers to mudstone that displays weak fissility parallel to stratification. At the 
Tajiguas Landfill, semi-shale is commonly more resistant to weathering than 
nonfissile mudstone, and in places exhibits a distinctive shiny luster on weathered 
surfaces in bright sunlight. Stratigraphically, semi-shale occurs in the uppermost 
108 m of the Rincon Shale at the Tajiguas Landfill.

Siliceous shale is present in the uppermost 50 m of the Rincon Shale at the Tajiguas 
Landfill. It exhibits well-developed fissility and porcelaneous luster, and is more 
resistant to weathering than mudstone and semi-shale. The siliceous shale is 
noncalcareous, hard, and brittle; it is mainly thin to medium bedded, and in places 
is laminated on a millimeter scale. Fish scales and bones are abundant. The 
siliceous shale is dark brown on fresh surfaces, and weathers white to reddish 
brown.

Dolomite is present through nearly the entire stratigraphic interval of the Rincon 
Shale at the Tajiguas Landfill, but is most abundant beginning about 94 m above the 
base of the Rincon. Dolomite occurs as (1) tabular beds up to 50 cm thick; (2) 
scattered individual spheroids and ellipsoids up to 150 cm thick and 130 cm across; 
and (3) laterally persistent zones of many such spheroids and ellipsoids. The 
dolomite is generally aphanitic, with abundant fish scales and bones; gray-brown to 
yellow-brown on fresh surfaces; hard and brittle; orange-weathering; and more 
resistant to weathering than the surrounding mudstone and shale. Sparse vascular 
plant fragments were noted in sample 90C-561, about 60.3 m above the base of the 
Rincon.



Interbeds of sandstone and bentonite within the Rincon Shale have been reported 
from several localities in the Santa Barbara-Ventura coastal area (Carson, 1965, p. 39; 
Dibblee, 1966, p. 43; Curran and others, 1971, p. 201; Edwards, 1971, p. 207 and p. 216- 
219; Edwards, 1972, p. 47) but were not observed by us in the Tajiguas Landfill 
section. Offshore in the Santa Barbara Channel, blueschist-bearing turbidite 
sandstones in the Rincon are thicker to the south, and apparently were derived 
from that direction (Hornafius, 1991, p. 895-897).

METHODS

Fifty-one rock samples were collected from the Rincon Shale in bulldozer 
excavations at the Tajiguas Landfill. The stratigraphic positions of the samples were 
measured by tape and compass traverse. Samples of rock were taken from about 20 
to 50 cm back from the outcrop faces in order to obtain the freshest available 
material. All 51 samples were analyzed using a Rock-Eval II pyroanalyzer, and 15 of 
these were examined for vitrinite reflectance, in the laboratories of the U.S. 
Geological Survey, Branch of Petroleum Geology, in Denver, Colorado. The results 
of the Rock-Eval pyrolysis and vitrinite reflectance analyses are shown in tables 1, 2, 
and 3.

Rock-Eval pyrolysis is a widely used method of rapidly evaluating the quality and 
thermal maturity of prospective petroleum source rocks (Espitalie and others, 1977, 
1984; Clementz and others, 1979; Tissot and Welte, 1984; Peters, 1986). The 
procedure mimics, in some respects, the natural hydrocarbon-generation processes 
which occur at much slower rates within the earth when sediments containing 
kerogen (sedimentary organic matter) are buried progressively deeper and subjected 
to higher temperatures (Waples, 1985). Pulverized samples of rock are held at 
250 °C for 3 minutes (the "isothermal period"), then gradually heated from 250 °C 
to 600 °C at 25 °C per minute in an oxygen-free atmosphere, causing the release of 
water, carbon dioxide, and hydrocarbons from the rock. Several parameters are 
measured automatically by the Rock-Eval apparatus (table 1). The quantity SI is the 
amount of hydrocarbons (HC), measured in milligrams HC per gram of rock, that is 
released upon initial heating to 250 °C; this quantity includes the bitumen (free 
organic compounds, including gas and oil) already present in the rock. The quantity
52 (also measured in milligrams HC per gram of rock) is the amount of 
hydrocarbons generated by pyrolytic degradation (or "cracking") of the remaining 
organic matter in the rock and is an indicator of the potential of the rock to generate 
additional oil and gas. T^x is the temperature generally about 400 °C to 500 °C at 
which S2 is at a maximum and is regarded as a rough indicator of thermal maturity.
53 is the amount of carbon dioxide (in milligrams of CO2 per gram of rock) 
generated during pyrolysis, and is thought to be related to the amount of oxygen in 
the pyrolyzed organic matter. Additional Rock-Eval parameters include the total 
organic carbon (TOC) in weight percent; the hydrogen index (HI), defined as the 
product 100(S2/TOC); the oxygen index (OI), defined as the product 100(S3/TOC); 
and the production index (PI), defined as the ratio SI/(SI + S2).
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Vitrinite reflectance (Ro) is a common method of determining thermal maturity 
and is obtained by measuring the percentage of light reflected by vitrinite, a type of 
kerogen formed from woody terrestrial plant material (Tissot and Welte, 1984; 
Waples, 1985). Higher values of vitrinite reflectance correspond to higher levels of 
thermal maturity. The maturation of vitrinite is directly related to maximum 
burial temperature and is irreversible (Barker and Pawlewicz, 1986).

QUANTITY OF ORGANIC MATTER

The quantity of organic matter in the samples is indicated by the TOC (total organic 
carbon, in weight percent) and the quantities SI and S2. The TOC of samples from 
the Rincon Shale ranges from 0.21 to 5.71 weight percent with a mean of 2.66 weight 
percent (tables 1 and 2). Out of 51 samples, 45 exhibit values of TOC greater than 1 
weight percent, and therefore have good to very good source rock generative 
potential (table 4).

Only 3 of the 51 samples show TOC values less than 0.5 weight percent (table 1), 
which generally is regarded as the lower limit for potential source rocks of 
petroleum (Tissot and Welte, 1984). We attribute these low values to oxidation of 
organic matter during weathering because all 3 samples (samples 91C-32, 91C-35, and 
91C-37 in table 1 and fig. 3) were collected from near the margin of the freshly- 
excavated part of the exposure at the Tajiguas Landfill, where the rocks were 
noticeably more weathered than in the rest of the section. Previous studies have 
shown that TOC can be significantly reduced by oxidation of organic matter during 
outcrop weathering (Leythaeuser, 1973; Clayton and Swetland, 1978; Peters, 1986; 
Stanley, 1987).

The ranges of TOC values for all rock types represented in our samples including 
calcareous and noncalcareous mudstone, dolomite, semi-shale, and siliceous shale- 
show significant overlap (table 2), suggesting that there is little if any correlation 
between lithology and organic content in our samples. However, this preliminary 
conclusion should be viewed with caution because of the small number of samples 
of dolomite, semi-shale, and siliceous shale that were examined.

Values of SI are quite low in our samples, averaging about 0.05 (table 2), indicating 
that the samples contain very little bitumen (free organic compounds, including gas 
and oil). The most likely reason for this is that the rocks have never generated 
bitumen because they are thermally immature, as discussed later in this report. In 
addition, the very low SI suggests that no hydrocarbons have migrated into the 
Rincon Shale in the Tajiguas Landfill area from other hydrocarbon source beds. It is 
possible that small amounts of highly volatile organic compounds were originally 
present in the samples but were lost to the atmosphere during transport from the 
field to the laboratory. Low values of SI also can be caused by adsorption onto clay 
minerals of the hydrocarbons produced during pyrolysis (Peters, 1986).
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Table 4. Geochemical parameters describing source rock generative potential, from Peters 
(1986)

Potential

Poor
Fair
Good
Very good

TOC
(weight %)

0-0.5
0.5-1.0
1.0-2.0
2.0+

Sl 
(mgHC/grock)

0-0.5
0.5-1.0
1.0-2.0
2.0+

S2 
(mgHC/grock)

0-2.5
2.5-5.0
5.0-10.0

10.0+

Table 5. Geochemical parameters describing type of hydrocarbon generated, from Peters 
(1986)

Type Hydrogen Index (HI) S2/S3

Gas 0-150 0-3
Gas and oil 150-300 3-5
Oil 300+ 5+

Table 6. Geochemical parameters describing level of thermal maturation, from Peters (1986)

Maturation Production Index (PI)1 Tmax 1 Vitrinite reflectance
[S1/(S1+S2)]_____CQ____(percent RQ)

Top oil window 
Bottom oil window

ca. 0.1 
ca. 0.4

ca. 435-445 
ca. 470

ca. 0.6 
ca. 1.4

1 Tmax and PI are crude measurements of thermal maturation and are partly dependent on other 
factors, including the type of organic matter (Peters, 1986).
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Values of S2 in our samples range from 0.1 to 25.8, averaging about 8.48 (table 2). 
Thirty-seven of the samples show values of S2 greater than 5 (table 1), indicating 
good to very good source rock generative potential (table 4). The anomalously low 
values of S2 (less than 0.5) in 3 samples near the top of our measured section 
(samples 91C-32,91C-35, and 91C-37 in table 1 and fig. 3) may reflect oxidation of 
organic matter during outcrop weathering.

TYPES OF ORGANIC MATTER

Plots of hydrogen index (HI) versus oxygen index (OI) on a modified van Krevelen 
diagram (fig. 4) show that most of the samples are intermediate between types II and 
III, but a few are intermediate between types III and IV. Similar results are indicated 
on a plot of hydrogen index versus TmaX (fig. 5). Type II kerogens are generally 
considered to be potential sources of oil, while type III kerogens are sources mainly 
of gas (Tissot and Welte, 1984; Peters, 1986). Type IV kerogens are generally regarded 
as inert, with little or no hydrocarbon source potential (Peters, 1986).

Twenty-one of the samples exhibit values of hydrogen index (HI) greater than 300 
and S2/S3 greater than 5, suggesting that these rocks are oil-prone (tables 1 and 5). 
Most of the remaining samples are both oil- and gas-prone. Only 5 samples show HI 
values less than 150 and S2/S3 less than 3 (table 1). However, these results should 
be viewed with caution because both HI and S2/S3 can be reduced by oxidation of 
organic matter during outcrop weathering (Peters, 1986). Therefore, the 
unweathered rocks of the Rincon Shale in the subsurface may be more oil-prone 
than is suggested by the Rock-Eval data from our surface samples.

Four of the samples (91C-32, 91C-34,91C-35, and 91C-37) plot as intermediate 
between types III and IV on the modified van Krevelen diagram (fig. 4) and also 
show oxygen index (OI) values greater than 150. Such values are unusually high 
(Katz, 1983), and can be caused by oxidation of organic matter in the samples during 
outcrop weathering (Peters, 1986; Stanley, 1987).

Elevated values of oxygen index (OI) also can be caused by generation of carbon 
dioxide during pyrolysis by thermal degradation of carbonate minerals such as 
calcite, dolomite, and siderite (Katz, 1983; Peters, 1986). None of our samples were 
treated with acid to remove carbonate before pyrolysis, so the impact of thermal 
degradation of carbonate on our results is uncertain. However, such effects probably 
weren't very great, because values of OI of our dolomite samples (range 43 to 93, 
mean 66) are not noticeably higher than those of other rock types (tables 1 and 2).
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Figure 4. Modified van Krevelen diagram (Peters, 1986) showing idealized 
kerogen types (solid lines) and results for samples of the Rincon Shale at the 
Tajiguas Landfill (dots). Most samples are intermediate between types II and HI. 
Type I and type II kerogens are oil-prone, type HI kerogens are gas-prone, and 
type IV kerogens are inert (Peters, 1986).
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Figure 5. Hydrogen index versus Tmax (Espitalie and others, 1984), 
showing idealized kerogen types (fields separated by dashed lines), 
lines of equal vitrinite reflectance, or RQ (solid lines), and results for 
samples of the Rincon Shale at the Tajiguas Landfill (dots). All samples 
are thermally immature with respect to the oil zone, or oil window. In 
this figure, the boundaries of the oil window in terms of vitrinite 
reflectance (Ro) and Tmax are according to Espitalie and others (1984) 
and differ slightly from those shown in table 6, which are from Peters 
(1986).
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THERMAL MATURITY

All of the samples exhibit Tmax less than 432 °C (table 1), suggesting that these rocks 
are thermally immature with respect to the oil window (table 6).

All but one of the 51 samples analyzed show values of PI less than 0.1, suggesting 
that they are thermally immature (table 6). The single exception, sample 91C-35, has 
a PI of 0.1; however, this value is probably not reliable due to oxidation of organic 
matter by outcrop weathering, which is suggested by the anomalously high OI, low 
TOC, and low SI of this sample (table 1).

Fifteen samples were processed and examined for vitrinite reflectance (table 3), but 
the results provide no useful information on thermal maturity. Vitrinite particles 
are absent from some samples, and sparse in the rest. Where present, the particles 
are very small. Much of the vitrinite shows strong signs of weathering and/or 
transport, and probably is recycled. Many samples contain organic material that has 
a very low reflectance and may be either vitrinite of low rank, or solid bitumen 
(table 3).

SUMMARY AND CONCLUSIONS

The results of Rock-Eval pyrolysis of outcrop samples collected from the Tajiguas 
Landfill suggest that the Rincon Shale is a potential source of petroleum. TOC 
values in our samples average 2.66 weight percent, and range as high as 5.71 weight 
percent. Kerogens in most of our samples are oil- and gas-prone types II and III (figs. 
4, 5). For comparison, the Miocene Monterey Formation of the Santa Barbara- 
Ventura coastal area and Santa Maria basin exhibits values of organic carbon 
averaging about 5 weight percent and ranging as high as 23 weight percent in 
individual beds (Isaacs and Petersen, 1987, p. 91). Kerogens in the Monterey are 
mostly oil- and gas-prone types II and III, and of mixed marine algal and terrestrial 
origin (Isaacs and Petersen, 1987, p. 94).

Our conclusions are generally in agreement with a previous Rock-Eval study of the 
Rincon Shale by Frizzell and Claypool (1983), who analyzed eight samples of the 
Rincon from outcrops in the Topatopa Mountains (fig. 1). Frizzell and Claypool's 
data are shown in table 7. The best of their samples exhibit high values of TOC (up 
to 2.52 weight percent), high S2/S3 (as much as 30.31), high HI (up to 1,102), and low 
Tmax (up to 428 °C), indicating that the Rincon in the Topatopa Mountains is a 
potential source of oil and gas but is thermally immature.

In a study of cuttings from a well in the South Elwood field area, Isaacs and others 
(1990) analyzed 35 samples from the Rincon Shale and reported organic carbon 
contents ranging from 1.98 to 4.00 weight percent, with a mean of 2.7 weight percent. 
These results fall within the range of the TOC values from our outcrop samples, 
which vary from 0.21 to 5.71 weight percent and average 2.66 weight percent (tables 1 
and 2). As noted earlier in this report, the lower TOC values of some of our samples
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are from rocks that were recognized as weathered at the time of sampling. In a study 
of strata in a tunnel beneath the Santa Ynez Mountains near Santa Barbara, Bandy 
and Kolpack (1963) analyzed 22 samples from the Rincon Shale and found organic 
carbon contents ranging from 0.05 to 3.61 weight percent and averaging 1.26 weight 
percent; these values are generally lower than those from both the South Elwood 
field and the Tajiguas Landfill. We caution that the organic carbon results reported 
from the tunnel, South Elwood field, and Tajiguas Landfill were obtained by 
different laboratories using different analytical methods, and may not be directly 
comparable (Dembicki, 1984). However, the relatively high average values of 
organic carbon reported from both surface and subsurface samples strongly suggest 
that the Rincon is indeed a potential source of hydrocarbons.

Available thermal maturity data, discussed earlier in this report, indicate that the 
Rincon Shale is immature with respect to the oil window in the Tajiguas Landfill 
area and Topatopa Mountains. However, elsewhere in the offshore Santa Barbara 
Channel and onshore Ventura basin, organic-rich strata in the Rincon may have 
been buried as deep as the oil window, and may have generated significant 
quantities of hydrocarbons. Structural cross-sections suggest that lower Miocene 
rocks, including the Rincon, have been buried to depths greater than 6,000 m in the 
central parts of the Ventura basin and Santa Barbara Channel (Nagle and Parker, 
1971, p. 282-284; Curran and others, 1971, p. 206). The likely importance of the 
Rincon as a source of petroleum should be further investigated by geohistory 
analysis, and by regional organic geochemical studies using methods such as 
kerogen elemental composition and oil-source rock correlation (e.g., Tissot and 
Welte, 1984, and references therein).
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